I'm trying to find tandem/cascade and parallel realization for the following transfer function:$$G(s)=\frac{(s+6)^2}{(s+2)^2(s^2+4s+6)}$$
For Tandem/cascade realization, I draw the following block diagram:
And there is my resolution attempt:
$$X_1=\frac{1}{s+2}U\Leftrightarrow (s+2)X_1=U\Leftrightarrow sX_1+2X_1=U\xrightarrow {\mathcal{L}} \dot{x_1}+2x_1=u\Leftrightarrow \dot{x_1}=2x_1+u$$
$$W_2=\frac{s^2+12s+36}{s^2+4s+6}X_1$$
$$W_2=\bigg(1+\frac{8s+30}{s^2+4s+6}\bigg)X_1$$
I don't know how to obtain the matrix and the final result. What are the steps that are missing?